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The lattice chosen for PD2 differs from that of PD1 in several respects: saliently, (a) it is a
superperiod 2 racetrack, instead of a superperiod 3 triangle, (b) it has 2/3 the circumference,
and (c) its kinetic energy range is less than half. In this chapter we describe its optics. Con-
clusions drawn from this material must be tempered with the understanding that “optics”
refers to the behavior of one and only one proton traversing a fixed, static electromagnetic
environment. It especially refers to those features of particle orbits that scale with the ratio
of magnetic field to momentum. Consideration of other phenomena, such as space charge
and impedance effects, is relegated to other chapters.

The structure of this chapter is similar to that of its counterpart in the PD1 Report [1],
which is assumed as background. Some information that can be found there is not repeated
here. The first section contains a list of constraints under which lattice designs and ideas
were considered. Descriptions of the arcs and straight sections of the PD2 lattice is pro-
vided in Section 3.2. Further examination of its optical properties, including discussions of
resonance excitation and errors, is postponed to Section 3.3.

Several possible designs were considered before settling upon one, but the decisions
that were made may not be final. They are, nonetheless, the ones under which this study
was conducted. A few promising alternatives will be presented in Section 3.4.

3.1. Requirements, Constraints, and Features

Design of the PD2 lattice was constrained and influenced by a number of criteria, ranging
from requirements to desiderata. These included:

Length The Proton Driver’s circumference was set to 474.2 m, to match that of Fermilab’s
Booster. This constraint severely limits the amount of space available for utility hardware.
If considered desirable or necessary, it could be enlarged in a later revision, either (a) by
adding cells to the straight sections or (b) by increasing the length of its standard cell (see
below). In the latter case, focusing must also increase to maintain the Driver’s optical prop-
erties.

Energy range For PD2, injection energy of the Proton Driver was raised from 400 MeV
to 600 MeV, and extraction energy lowered from 16 GeV to 8 GeV, for transfer into the
Main Injector. At the Driver’s length of 474.2 m, the protons’ revolution frequency will
thus vary from 501 kHz (2.00 µsec) to 629 kHz (1.59 µsec).
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Transition We avoid transition effects in the Proton Driver by requiring γt to be beyond
the reach of the extraction energy. Thus, it is required that γt > 9.5, or, equivalently, that
the momentum compaction α = 1/γ2

t < 0.011.

Momentum acceptance The large momentum acceptance of ± 2.5 % used in PD1 was
predicated on using the Driver as front end to a neutrino factory or muon collider. In this
study, the required acceptance has been reduced to ± 1 %, suitable for transfer to the Main
Injector.

Transverse acceptance Tune spread within the beam due to space charge can be as large
as 0.25. In order to make this as small as possible, painting will be used to flatten the
transverse charge distribution. We require that transverse beam emittance, after painting
and including space charge effects, be no larger than 40 π mm-mr (normalized, 95%). The
Proton Driver must accept 40π mm-mr invariant emittance in both planes. To achieve this,
emphasis was placed on minimizing the maximum values of lattice functions, βx and βy,
and horizontal dispersion, D. In the course of the study, a criterion was informally estab-
lished that set upper bounds of β ≤ 20m and D ≤ 2.5m. Together, these assure a maximum
horizontal excursion of ≈±5cm from the closed orbit, evenly divided between dispersion
and emittance.

Phase advance Although it has not been observed in proton machines, it is prudent to
avoid any possibility of synchro-betatron coupling resonances [2], especially in view of a
relatively large value of synchrotron frequency, (νs ≈ 0.06), at low energies. This is done
by zeroing the chromaticity with sextupoles in the arcs and the dispersion in the straight
sections, where RF cavities will be placed. To assure this, the horizontal phase advance
through an arc was required to be a multiple of 2π.

Dynamic aperture The dynamic aperture of the Proton Driver, calculated with chro-
maticity sextupoles powered but no other significant sources of nonlinearity, is required to
exceed 3×40π mm-mr (invariant, transverse) emittance for the entire momentum spread
range of ±1%.

Straight sections Two long straight sections will be used for injection, extraction, and
acceleration. Collimation will be done in the arcs. Considerations given to the design of
the two long straight sections included:

Superperiodicity Trim quads in the straight sections will be used to tune the Proton Driver
to a good working point. It is highly recommended that they be powered symmetrically
across the Driver so as to maintain its superperiodicity.

Injection The beam’s size at the stripping foil should be large enough to prevent excessive
temperatures. At the same time, large β functions at the foil contribute to emittance growth,
due to multiple Coulomb scattering. The compromise choice of βx ≈ βy ≈ 10m satisfies
these requirements. In the doublet lattice of the straight section the foil can be located
between the focusing and defocusing quadrupoles of a doublet. This permits the use of a
defocusing quadrupole for injection and circulating beams separation, upstream of the foil,
at the injection Lambertson magnet, and it permits the use of a focusing quadrupole for
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separation of the H0 component and of circulating beam behind the foil at the entrance to
the neutral beam dumper. Drift spaces between the adjacent doublets upstream and down-
stream must be large enough to accommodate both H− injection and dumping of the H0

component. The phase advance between the first and last kicker magnets for painting, lo-
cated on each side of the foil, should be close to 180◦ so that the required kicker strength
is not excessive.

Extraction The phase advance between kickers and septa as well as lattice functions at var-
ious extraction devices should be chosen carefully in order not to make excessive demands
on magnets. The system should be able to accommodate at least twice the 95% beam emit-
tance, εinv = 40π mm-mr, so that no halo scraping occurs in any extraction magnet.

RF It is intended to reuse RF cavities from the current Fermilab Booster in the Proton
Driver’s straight sections. The cavities are 2.35 m long, and at least 21 will be needed,
requiring 49.35 m of empty space. If there is at least 7.05 m between quadrupoles, three of
these cavities can be placed within a straight section cell.

Collimation Large β functions and dispersion are necessary at the primary collimators.
The phase advance over the collimation system should not be less than 180◦ in both direc-
tions.

Magnets We will write criteria for magnetic field errors in Section 3.3.4. Here, we touch
upon three properties.

Peak fields In order that quadrupoles and dipoles track well during the ramp, while avoid-
ing both saturation and excessive power loss, it was decided early to limit the maximum
field in dipoles to 1.5 T and the peak gradient of quadrupoles to 10 T/m. Further, a maxi-
mum kick angle of 5 mrad is imposed for dipole correctors.

Spacing Because of fabrication requirements for magnet ends and bellows, minimal spac-
ings between quadrupoles and dipoles were established: the minimum space between the
quadrupoles of a doublet was set to 47 cm; the minimum space between a quadrupole and
a dipole, to 85 cm.

Edge focusing To mitigate the sagitta problem, dipoles will be bent into an arc correspond-
ing to the radius of curvature of the closed orbit. However, the faces of a dipole will remain
parallel. The impact of vertical edge focusing on lattice functions and tune must be taken
into account in designing the Proton Driver.

3.2. Lattice Description

Based primarily on considerations of available space and the size of lattice functions, a
racetrack configuration was chosen for PD2: two 75.44 m straight sections connected by
two 161.66 m, 180◦ arc sections, making its circumference of 474.20 m identical to the
current Fermilab Booster’s, as required. The racetrack structure leads to longer straight
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sections and ability to design arcs that give higher transition energy. In this section we’ll
describe the pieces of this lattice.

3.2.1. Overview

The Proton Driver is partitioned into forty-four 10.777 m cells, 15 for an arc and 7 in a
straight section. Each cell contains a defocusing (D) and focusing (F) quadrupole doublet
on the main bus and a corresponding pair of independently powered trim quads. Their peak
gradients, at 8 GeV extraction (kinetic) energy, are ± 10 T/m. The F quad is 1.262 m long,
the D quad, 1.126 m, and they are separated by 47 cm. Trim quads, positioned just outside
the doublet, are 20 cm long; each is separated by 19 cm from its counterpart.

This leaves about 7.1 m of empty space in each cell. In the arcs, they will be filled with
dipoles and collimation hardware; in the straight sections, with hardware for injection,
extraction, and acceleration. Additional diagnostic and control devices – beam position
monitors, orbit correctors, dampers, and the like – must fit into whatever space remains.

3.2.2. Arc module

Each arc is organized into 5 modules of 3 cells, 15 cells in all. Quadrupole lengths were
chosen so as to produce a phase advance per module of (∆ψx,∆ψy)|module = (8π/5,6π/5)
which sets the average phase advance per cell to be (∆ψx,∆ψy)|cell = (8π/15,2π/5)
= (96◦,72◦). A horizontal phase advance close to 90◦ is convenient for injection and ex-
traction. Because the total phase advance across an arc is (∆ψx,∆ψy)|arc = (8π,6π), it is,
to first order, optically transparent: its 4×4 transfer matrix is the identity. Thus, the arcs
will preserve lattice functions, including zero dispersion, across the straights. If the phase
advance per cell were exactly repeated throughout the racetrack, the Proton Driver’s tunes
would be (νx,νy) = (11.73,8.80).

The two outer cells of an arc module contain a large dipole (5.646 m, 16.2◦ bend) and
the inner cell a small one (1.188 m, 3.4◦ bend). Their lengths were chosen so as to create a
first order achromatic bend, thus zeroing the dispersion between modules. As a stand-alone
periodic unit, the lattice functions of a single arc module would be as shown in Figure 3.2.1.

Four chromaticity correcting sextupoles are placed in each arc module. To conserve
space, they replace the four trim quadrupoles closest to the short dipole. Alternatively,
it may be possible, and perhaps preferable, to build a correction package consisting of
quadrupole and sextupole. If not, then we must rely on two trim quads to control the phase
advance through each module.
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Figure 3.2.1. Lattice functions of (a) an arc module and (b) a straight section’s cell, treating
each as a periodic unit.

3.2.3. Straight section

The seven cells in each straight section do not contain dipoles, and the absence of edge fo-
cusing distorts the lattice functions (esp., βy) slightly. Lattice functions for a single straight
section cell, treated as a periodic unit, are shown in Figure 3.2.1.; its phase advance is
(∆ψx, ∆ψy )|cell = (8π/15, 0.96 · (2π/5)). In fact, these are its lattice functions in the base
configuration, because of the arcs’ optical transparency.

3.2.4. Hardware and space allocations

The use of similar cells in the arcs and long straight sections, identical except for the pres-
ence of dipoles in the arcs, allows for just four kinds of magnets powered on the main bus:
2 quadrupoles, and 2 dipoles. The F and D quadrupole strengths are equal and opposite;
the two dipoles likewise have equal fields, but all four have different lengths. It is possible
to obtain a reasonable beta function match between the arcs and straight sections while
minimizing the number of magnets with different lengths.

The magnetic hardware and their space usage in the PD2 lattice are tabulated below.
Only magnetic lengths are included in this table; they do not include the physical ends of
elements. Using these numbers, dipoles take up 26.32% of the lattice, main bus quads,
22.16%, chromaticity correcting sextupoles, 2.53%, and trim quadrupoles, 2.02%.

3.2.5. Nomenclature

In order to identify the components in the Proton Driver a system of nomenclature has been
devised so that the location, and to some extent the function, of an element can be inferred
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Lattice Element Name Number Length [m] Field
PD2 DIPOLES B1 2x5x2 = 20 5.646 B = 1.49 T

B2 5x2 = 10 1.188 1.49
QUADRUPOLES QF (3x5+7)x2 = 44 1.262 B ′ = 10.02 T/m

QD (3x5+7)x2 = 44 1.126 -10.02
QDT<N> (5+7)x2 = 24 0.200 B ′ = 0.00 T/m
QFT<N> (5+7)x2 = 24 0.200 0.00

SEXTUPOLES SF 2x5x2 = 20 0.300 B ′′= 49.10 T/m2

SD 2x5x2 = 20 0.300 -71.05
FREE (total) 222.728

Table 3.2.1. Hardware and space usage in the PD2 lattice.

from its name. The direction of the beam is clockwise and our naming system will follow
the direction of the beam. It will be easier to follow the description below by referring to
the graphical layout of the Proton Driver contained in Chapter 2.

The system involves dividing the ring into four logical groupings, or sectors, of the
elements. The first sector is an arc, denoted as P10, consisting of five modules of three
cells. Each cell contains a quadrupole doublet and a bending magnet. The quadrupoles will
be assigned a name that reflects (a) their horizontal focusing properties, QD or QF, (b) the
sector, (c) the module, and (d) the cell. Thus, QDi jk will mean a horizontally defocusing
quadrupole in the kth cell of the jth module in the ith sector: the first quadrupoles in the
first sector will be named QD111 and QF111, and the last quadrupoles in this sector will
be QD153 and QF153.

The arc, P10, is followed by a straight section, P20, consisting of 7 cells, each with
a quadrupole doublet. To resolve the superperiod 2 ambiguity, we identify P20 as the
sector containing injection hardware, in addition to RF cavities. The quadrupoles will
be assigned a name that reflects (a) their horizontal focusing properties, QD or QF, (b)
the sector number, (c) 0 for the module number, (d) and the cell number. QDi0k will
mean a horizontally defocusing quadrupole in the kth cell in the ith sector. Thus, the first
quadrupoles in the second sector will be named QD201 and QF201. The last quadrupoles
in this sector will be QD207 and QF207.

The injection straight P20 is followed by the arc sector P30 where collimation takes
place. As in the arc P10 there are 5 modules each consisting of 3 cells. The naming
convention is the same as in P10 except that the magnet names have the value of 3 for the
sector number. The ring is completed with another straight section P40 that contain RF and
extraction elements. Its naming scheme is similar to that of section P20.
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3.3. Analysis

The complete lattice functions for half of the racetrack, with one arc joined to one straight
section, are shown in Figure 3.3.2. The vertical beta wave is caused by edge focusing in the
dipoles, or, alternatively, its absence in the straight section cells. The arcs’ optical trans-

0.0 100.0 200.0
Arc Length  [m]

0.0

5.0

10.0

15.0

20.0

H
or

iz
on

ta
l &

 V
er

tic
al

 B
et

a 
 [m

]

0.0

1.0

2.0

3.0

D
ispersion   [m

]

Figure 3.3.2. Lattice functions for half the racetrack: βx is plotted as a solid line, βy as a
dashed line, and D as a dark solid line.

parency confines the wave; it does not propagate into the straight sections. The actual tunes
associated with the base configuration are shifted from (11.73,8.80) to (11.747,8.684).
That point is shown as a dark circle in Figure 3.3.3., wherein are drawn the sum resonance
lines up to fourth order.

As an exercise, families of trim quadrupoles in the straight section were used to move
the tunes to (11.880,8.850), the point shown as an open circle in Figure 3.3.3., without
breaking superperiodicity. In the sections to follow, we will refer to this as the “tuned
configuration.” Lattice functions are, of course, perturbed slightly in the process. Tuning
was done in such a way that the vertical beta wave was transferred from the arcs to the
straight sections.

The tunes identified in Figure 3.3.3. refer to single particle optics. In reality, space
charge will reduce the tunes of particles in the core of the beam by an amount that will
depend on painting. (See Chapter 4.) Protons undergoing large amplitude oscillations
will be less affected by space charge, but their tunes will increase (slightly) due to the
presence of chromaticity correcting sextupoles, as will be discussed on page 3 - 9. The
combined effects of space charge and sextupole fields (and octupole error fields) will spread
the tunes away from the displayed points in opposite directions. The single particle “optical
tune,” the “working point,” acts as a reference for this distribution. Maximum spread will
occur at injection. As the beam’s energy increases, the distribution will collapse into the
working point. Space charge forces will decrease, as v/c → 1, shrinking the distribution
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Figure 3.3.3. Tune diagram. The Proton Driver’s base lattice (dark circle) has tunes
(11.747,8.684). A possible tuned lattice (white circle) is shown with tunes (11.880,8.850).

from below, and the sextupole/octupole tune spread will decrease, as emittances become
smaller, shrinking the distribution from above.

3.3.1. Chromatic properties

The natural chromaticities of the PD2 base configuration – normalized as ∆ν = ξ∆p/p
– are (ξx,ξy) = (−13.61,−11.88). These are zeroed by powering the sextupoles placed
in the arc modules to B′′ = 49 T/m2, near the F quad, and B′′ = −71 T/m2, near the D
quad. (In the tuned configuration these values are only slightly different: B′′ = 50 T/m2

and B′′ = −73 T/m2.) Chromaticity in the actual Proton Driver undoubtedly will not be set
to zero but to some small negative value, since the machine will run below transition. Thus,
the actual values of B′′ will be marginally smaller, mitigating somewhat the magnitude of
effects discussed in the rest of this report.

Because each module is a first order achromat, dispersion is small in the vicinity of
its two outer dipoles. The contribution from the shorter, central dipoles to the momentum
compaction can be estimated by assuming a horizontal dispersion of 1.7 m at that location.

〈D/ρ〉 ≈ 1.7m
29.7Tm/1.49T

· 1.19m · (5 ·2)
474.2m

= 0.0021

This accounts for 40% of the total momentum compaction, which is α = 0.00528, making
γt = 13.8, comfortably larger than 9.5.

The chromaticities, ξx,ξy, considered not as constants but as functions of ∆p/p, are
plotted in Figure 3.3.4. for the extended range |∆p/p| ≤ 0.02. ξy is nearly flat for negative

3 - 8



∆p/p, with a variation of less than 0.5 over the entire range. On the other hand, ξx increases
monotonically, only slightly faster than linearly, by more than 2.5. The overall variation
across ± 1% is small.
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Figure 3.3.4. Proton Driver chromaticity and γt .

The corresponding plot of γt vs. ∆p/p is the almost exponential looking curve displayed
on the right in Figure 3.3.4. Its variation is of little concern, because all of these values are
larger than required.

Lattice functions, βx, βy, and D, take on perturbed values when ∆p/p �= 0. Their max-
ima are plotted, as functions of ∆p/p, in Figure 3.3.5. The variations of βy,max and Dmax are
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Figure 3.3.5. Proton Driver maximum β functions and dispersion.

monotonic, while βx,max goes through a minimum near ∆p/p = 0. As in the previous fig-
ures, there is larger variation for positive than negative ∆p/p. Estimates of the closed orbit
based on the value D|∆p/p=0 should be increased by ≈ 12% at the momentum acceptance
limit, ∆p/p = 1%.

3.3.2. Tune footprint

The sextupoles used to zero chromaticity will produce an amplitude dependent tune shift
proportional to the square of their excitation. Second order perturbation theory predicts,
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for the PD2 base configuration,

∆νx = 0.120 εx/π+0.114 εy/π
∆νy = 0.114 εx/π+0.230 εy/π ,

where ∆ν is given in units of 10−3 and ε is in mm-mr.1 For the tuned configuration, the
coefficients are somewhat larger.

∆νx = 0.126εx/π+0.397εy/π
∆νy = 0.397εx/π+0.384εy/π

The upper limit on transverse emittance is εinv ≤ 40π mm-mr, so that

ε/π =
εinv/π

βγ
≤ 40

9.47
= 4.22 mm-mr at extraction

≤ 40
1.30

= 30.8 mm-mr at injection. (3.1)

Even at injection into the tuned configuration, the vertical tune spread resulting from sex-
tupole excitation will only be about 0.02.

3.3.3. Dynamic aperture

The dynamic aperture of the PD2 lattice has been estimated by tracking. Only the dipoles,
quadrupoles, and chromaticity sextupoles have been included. Again, this is single parti-
cle tracking within a static magnetic environment: it does not include space charge, syn-
chrotron oscillations (with or without non-zero chromaticities), or magnet ramping; also
not included are systematic or random error fields. The results obtained should be consid-
ered an upper bound on the actual dynamic aperture. Fortunately, it turns out to be a large
upper bound. Its actual (theoretical) value will have to be determined by more detailed
studies, especially including space charge and RF.

Since “dynamic aperture” is an ambiguous concept, we will first describe the procedure
that was used. A particle was launched from a point (x,y),x,y 	 0, with x′ = y′ = 0.0.

If the particle failed to complete 105 turns, the value of y was reduced and the tracking
started again. When the particle survived for 105 turns the initial point, (x,ymax), was
considered inside the dynamic aperture. Once a stable orbit was found, x was decreased,
y was reset to a large value, and the entire process was repeated, down to x = 0. The set
of pairs {(x,ymax)} were then converted into normalized emittances using the values of the
lattice functions at the initial point.

The results, at the injection energy of 600 MeV, where dynamic aperture is smallest, are
shown in Figure 3.3.6. Along the diagonal, the dynamic aperture is at εinv ≈ 10×40π mm-

1This is written using “emittance” notation, ε, but, since we are dealing with a single particle, ε is more properly interpreted as an
action (or amplitude) coordinate, I, according to ε/π = 2I.
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Figure 3.3.6. Dynamic aperture: (a) Scatter plot of largest amplitude stable orbits at
∆p/p = 0 and ±2%. (b) Tunes of orbits at the boundary of the dynamic aperture.

mr. For purely horizontal orbits it increases to εinv ≈ 25×40π mm-mr, and for mostly
vertical orbits2 it is slightly less, εinv ≈ 20×40π mm-mr. The interior of this region was
scanned further to make certain that the stable orbits defining the dynamic aperture were
not caused fortuitously by isolated stable regions (islands) in an otherwise unstable portion
of phase space.

Peaks of the tune spectra were calculated for all orbits just inside the dynamic aperture.
The right hand side of Figure 3.3.6. shows a scatterplot of these values superposed on the
tune diagram of Figure 3.3.3. Clearly, there is a clustering about the line 4νy = 35, which
is excited at second order in the strength of sextupoles. The chromaticity sextupoles both
excite this resonance and provide the necessary tune spread to put it within the reach of
very large amplitude orbits, as will be discussed in Section 3.3.4.

3.3.4. Errors

We will assume the same estimates for positioning errors that were made in the PD1 Re-
port [1, p.3-12]:

1) transverse quadrupole misalignments: σX = σY = 0.2 mm.
2) dipole roll: σΘ = 0.2 mrad; this will be relaxed to 0.5 mrad.
3) integrated dipole field uniformity: |∆B/B| < 2×10−4; this will be relaxed to 5×10−4.

2Because of the sextupoles, pure vertical orbits are impossible.

3 - 11



These estimates were based on criteria set for alignment of the Antiproton Accumulator.
Those which are to be “relaxed” were considered too difficult to achieve reliably.

With regard to field quality, a “flatness criterion” was established in PD1,

flatness at x = x0 ≡
∣∣∣∣
∫

dzBy(x = xo,y = 0,z)∫
dzBy(x = 0,y = 0,z)

−1

∣∣∣∣ for dipoles.

For quadrupoles, replace By with B′ = G = ∂By/∂x in the integrals. Upper bounds for
flatness were specified in the PD1 Report [1, p.3-14] at an offset of xo = 4 inches. We adjust
them here to an offset of xo = 3 inches: 3×10−4 for dipoles and 3×10−3 for quadrupoles.
In terms of isolated multipoles, this is equivalent to:

dipoles: |B(2)/B| < 0.1 m−2 = 0.3 units
|B(4)/B| < 214 m−4 = 0.04 units

quadrupoles: |G(2)/G| < 1 m−2 = 3 units
|G(3)/G| < 41 m−3 = 1 units

where “unit” refers to the Fermilab convention of “×10−4 inches−n.” For now, we continue
to accept these as achievable estimates of field quality.

The use of multipoles is complicated by the fact that dipoles are to be bent into an
arc. In a straight magnet, the vector potential of the error field – the quantity appearing in
Hamiltonian resonance calculations – is expanded in the midplane as,

A3/B =
1
2

b1x2 +
1
3

b2x3 + · · · .

When the magnet is bent, curvature terms are added to these coefficients. [3, p.177]

Aφ/B =
1
2
(b1−1/ρ)x2 +(b2/3−b1/6ρ+1/2ρ2)x3 + · · ·

For the Proton Driver, 1/ρ = 1.5T/29.7Tm = 13×10−4 in−1, or 13 “units.” Its interfer-
ence with b1 is already accounted for by linear theory. Using the specifications given above,
b2/3 will be ≈ 0.1 units, while the curvature terms contribute 0.009 units to the x3 coeffi-
cient. Unless dipoles are constructed extraordinarily well, their error fields will dominate
over curvature effects.

3.3.4.1. Closed orbit
To first order, the closed orbit error at point i caused by a kick error, ∆x′, at point j is given
by the matrix element [4, p.92],

∂xi/∂∆x′j ≡ Mi j =
1

2sinπν

√
βiβ j cos(ψi−ψ j −πν) ,

where we assume 0 ≤ ψi −ψ j < 2πν. If the errors are random and uncorrelated,

σ2(xi) = ∑
j

M2
i jσ

2(∆x′j)
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Figure 3.3.7. Closed orbit error standard deviation: base (left) and tuned (right) lattices.
Only half the racetrack is shown.

(Ab)using the misalignment errors listed in Section 3.3.4., we can estimate the relevant
standard deviations as follows.

(a) quad misalignment : σ∆x′ =
B′l
Bρ

σX

(b) dipole roll (small) : σ∆x′ =
Bl
Bρ

σΘ

(c) field uniformity : σ∆x′ =
Bl
Bρ

σ∆B/B

The horizontal closed orbit is affected by (a) and (c); the vertical, by (a) and (b). Results of
inserting these into Eq.(3.3.4.) and performing the calculation on the base configuration are
shown on the left in Figure 3.3.7. The results for the tuned configuration are shown on the
right. In both cases, only half of the racetrack is shown. The larger excursion in the tuned
configuration arises (a) mostly from the sinπν in the denominator of Eq.(3.3.4.), (b) from
slightly larger lattice functions, and (c) from the fact that the trim quads are contributing.
The numbers are in reasonable agreement with our crude estimates. The difference in tunes
accounts for most of the increase in going from the base lattice to the tuned lattice.

Steering magnets A system of correction dipoles will be necessary to reduce the ex-
pected 5-10 mm (or more) excursion of the closed orbit. The specification common to
horizontal and vertical directions is that the maximum kick angle of each steering element
should be 5 mr. The maximum horizontal and vertical deflections generated by this kick
will be 50 mm and 77 mm, respectively. For horizontal kicks, there will be special windings
in each dipole. The required kick angle is 1.8% of the bend angle of regular dipoles and
8.4% of short dipoles. Horizontal orbit correction is then possible up to the highest energy.
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Vertically, the kick will be provided by 20 cm long steering magnets. A 5 mr vertical kick
would require a field of 0.10 T at injection and 0.74 T at extraction. Imposing an upper
bound on corrector strength would reduce the maximum (kinetic) energy at which such a
kick could be done: e.g., 5.1 GeV for Bmax = 0.5 T , 2.8 GeV for Bmax = 0.3 T . Correcting
an improbably bad vertical closed orbit beyond this energy would then require realigning
quadrupoles. In such a case, it should be possible to select the optimum combination of a
specified number of quadrupoles based on BPM readings of the established closed orbit.

There will be no room for correctors in the cells containing RF. Care must be taken to
minimize the closed orbit deviation and its derivative at the boundaries of those regions.

3.3.4.2. Tunes
We consider here three isues regarding the Proton Driver’s tunes: their adjustment away
from the base configuration, linear horizontal-vertical coupling, and the tune footprint
caused by chromaticity sextupoles.

Tune adjustment Arc quadrupoles will be responsible for maintaining the phase advance
per module in arcs, while quadrupoles in long straights will be used to locate the working
point at the optimum position in the tune diagram. It is impossible to predict what this will
be. Experience gained in Accumulator and Main Injector operation indicates that, if mag-
nets are constructed carefully, it is not necessary to have the flexibility to explore a wide
range of tune values: something less than ± 0.3 may be sufficient. For the Proton Driver,
tune adjustment will be needed for picking a good working point, maintaining the phase
advance per module in the arcs, compensating for space charge detuning, and minimizing
beam loss during extraction.

We make a representative estimate (at 8 GeV) of the tune correction obtained by pow-
ering one trim quad at 1 T/m. Ignoring the orthogonal plane, this is

(∆νx,∆νy) =
1

4π
B′l
Bρ

· (βx,βy ) =
1

4π
· 1T/m ·0.2m

29.7Tm
· (14m,16m) = (0.0075,0.0086)

There are 24 trim quads of each type, but only the 14 in the straight sections would be used
for tune control. This provides a tune reach of (±0.053,±0.060) per T/m of excitation.

Tune adjustment can also be done by special windings in each quadrupole. If the gradi-
ent in a main bus (QD or QF) quadrupole is adjusted by 1%, the in-plane tune shift would
be ∆ν = 0.005. The 14 main quads in the straight sections would then supply an additional
tune reach of ≈±0.07 (per 1% variation). Again, these estimates are made ignoring the
influence of the orthogonal plane. Taking it into account would extend the reach.

Horizontal-vertical coupling Linear coupling is produced by skew quadrupole compo-
nents, which can arise from field errors and from rolling normal quads. Its effects will be
most pronounced when tunes are near the resonance condition, νx −νy = n, where, for the
Proton Driver, n = 3. Near such resonance, the Hamiltonian is characterized by a dimen-
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sionless coupling,

g =
1

2π

∣∣∣∣∑ B′
skewl

Bρ

√
βxβye

i(ψx−ψy−δ·Θ)
∣∣∣∣ ,

where B′
skew = ∂Bx/∂x is the skew coefficient, and δ = νx −νy −3. If a normal quad is

rolled through a small angle, Θ, then B′
skew = B′ ·2Θ. Following usual procedures, as was

done in PD1, we will estimate this term by summing in quadrature, and use σΘ for Θ, with
the result,

σg =
1

2π
·2σΘ

(
∑
(

B′l
Bρ

)2

·βxβy

)1/2

≈ 1
π
·5×10−4 ·

(
44 ·
(

10T/m ·1.26m
29.7Tm

)2

·13m ·7.5m

+44 ·
(

10T/m ·1.13m
29.7Tm

)2

·6.0m ·15.3m

)1/2

= 5.9×10−3 .

The coupling into transverse amplitudes is (1+(δ/g)2)−1/2 ≈ (1+(δ/σg)2)−1/2. For
the base configuration, (11.747,8.684), this is about 9%. That is, if the horizontal excursion
of the beam is 1 cm, the estimated (r.m.s.) excursion in the vertical direction generated by
coupling will be 0.9 mm. This is large enough to consider introducing a few skew quad
correctors, to reduce the value of g, or tuning farther from the diagonal, to increase the
value of δ.

Sextupole errors in dipoles The contribution of a local sextupolar field to chromaticity
is approximated as

(∆ξx,∆ξy ) =
1

4π
·
(

B′′l
Bρ

)
·D · (βx,−βy ) .

If 〈|B′′/Bo|〉 < 0.1m−2 in the dipoles, then their contributions to the chromaticity will be

(|∆ξx|, |∆ξy|) ≈ 20× (0.006,0.009), for long dipoles,

≈ 10× (0.02,0.03), for short dipoles.

These values are negligible compared with the natural chromaticities of (-14, -12).

With the phase advance per arc module set at (∆ψx,∆ψy)|module = (8π/5,6π/5,) contri-
bution of the dipoles’ average sextupole field to the 3νx = 35 resonance will cancel across
one arc, but its contribution to the νx +2νy = 29 resonance will build maximally across
an arc, while cancelling across the ring. This cancellation depends on good adherence to
superperidiocity, as will be discussed below.
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3.3.4.3. Resonances
As suggested by Figure 3.3.3., it will be important to pick a good working point for the Pro-
ton Driver. We will discuss here the possible effects of two third integer resonances close
to the working point of the base configuration, νx +2νy = 29 and 3νy = 26, and (briefly)
the 4νy = 35 resonance, which was seen in Figure 3.3.6. to be important in determining the
dynamic aperture. In addition, see the discussion of phase advance in Section 3.4.

The effect of the νx −νy = 3 resonance on the tuned configuration was discussed in
Section 3.3.4. A driver of the 2νx −2νy = 6 resonance will be space charge, a variant of
the so-called “Montague resonance.” Discussion of space charge effects is postponed to
Chapter 4.

Most of the discussions in this section, and some in the preceding sections, are carried
out using rough approximations. Applying isolated resonance theory validly requires sat-
isfaction of many conditions. At the least, particle tunes must be very close to one and
only one active resonant line, and no detuning must occur, apart from what is done by the
resonance source itself. We will ignore the extent to which these conditions are violated.

νx +2νy = 29 The phase advance of (∆ψx,∆ψy) = (8π/5,6π/5) across an arc module
means that the sextupoles’ contribution to the νx +2νy = 29 resonance driving term will
add in phase from one module to the next. This is mitigated by the fact that 29 is an odd
number, so that whatever resonance driving term is produced by one of the arcs should
be cancelled by the other. Nonetheless, trusting in cancellations across opposite sides of
a ring is risky. Superperiodicity of the lattice can be broken by the tuning quads in the
straight sections, or simply because of field errors. A phase error between the two arcs will
certainly arise. Estimating the effect of this resonance must take that into account.

A (moderately) “safe region” for the νx +2νy resonance is bounded by the curves [3,
pp.233-238]

1
8

(
δ
g

)2

=
1
4

εy

π
+2

(√
εx

2π
− 1

4
|δ|
g

)2

,

and − 1
4

(
δ
g

)2

= 2
εx

π
− εy

π
,

where g =

√
2

8π

∣∣∣∣∑ B′′l
Bρ
√

βxβye
i(ψx+2ψy−δ·θ)

∣∣∣∣ ,

and δ = νx +2νy −29 = 0.12. If sextupoles existed in all three of an arc module’s cells, the
value of g for one module would almost vanish, because 〈∆(ψx +2ψy)|cell〉 = (2/3) ·2π.

However, for the base configuration as given, with sextupoles in two of the three cells, the
value of g for one arc module is ≈ 1.36 m−1/2. If we ignore the contribution from δ ·θ
in the exponent, then g ≈ 6.82m−1/2 across an arc, since ∆(ψx +2ψy)|module = 4π. Let the
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phase error between arcs be Φ ≡ ∆ψx +2∆ψy (mod 2π). Then,

gracetrack = 2 | sin(Φ/2) |garc .

The “safe regions” are plotted in Figure 3.3.8. for Φ ∈ {45◦,90◦,135◦,180◦ }. Two squares
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Figure 3.3.8. “Safe regions” for the νx + 2νy resonance, in the base configuration, when
Φ ∈ {45◦,90◦,135◦,180◦ }, with invariant emittance of 40π mm-mr shown at injection and
extraction. Ignoring space charge and second order sextupole effects, the injected beam is
within the boundary provided Φ  105◦.

in the lower left corner show the beam emittances at injection and extraction. (See Eq.(3.1).)
The boundary crosses the injected beam at Φ ≈ 105◦. Superperiodicity must be preserved
to a value smaller than that.

This optimistic statement does not take into account the effects of space charge and
(to second order) sextupoles in distributing tunes throughout the beam. How small, for
example, must Φ be in order to reduce the “tune width” to δ ≤±0.01 for all particles
at injection? Answering this is complicated by the fact that the largest tune shifts will
occur near the core of the beam. For the sake of argument, let us say that 10% of the
beam (emittance) gets shifted within reach of the resonance line. Then, we require that
superperiodicity be preserved at the level Φ < 24◦ or better, significantly more restrictive
than the optical value of 105◦. However, it is possible that space charge detuning could limit
the instability produced by the resonance. [5] If the PD2 base configuration is seriously
considered, this issue should be studied thoroughly. Near extraction, where particle tunes
will be closer to the reference point, Φ < 21◦ should be sufficient to allow moving the
entire beam within ±0.01 of the resonance line, although there is no reason to do so.
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3νy = 26 Even in the absence of field errors, the 3νy = 26 resonance can be excited in
the base configuration by a roll misalignment of chromaticity sextupoles. The maximum
vertical emittance contained within a (0,3) separatrix is,3

εmax =
2√
3

(
δ
g

)2

, where (3.2)

δ ≡ 3νy −26 , and

g ≡ 1

12
√

2 π

∣∣∣∣∑
(

B′′
skewl

Bρ

)
β3/2

y ei(3ψy−δ·θ)
∣∣∣∣ .

The sum is taken over all sources of skew sextupole: δ = 3νy −26, assumed to be small, is
the distance to the resonance line, g is the resonance coefficient, θ = s/R is the azimuthal
coordinate around the ring, while βy and ψy are vertical lattice functions at θ. When δ
is sufficiently small, we can set δ = 0 in the exponent of the integrand. If the field arises
from a dipole error, then B′′

skew = 2Ba2, where B is the dipole field and a2 is the skew
sextupole coefficient; if it arises from rolling a normal sextupole through a small angle, Θ,
then B′′

skew = B′′ ·3Θ. Thus, we can rewrite Eq.(3.2) as,

g =
1

12
√

2 π

∣∣∣∣∣ ∑
dipoles

2a2 ·φ ·β3/2
y ei(3ψy−δ·θ) + ∑

sextupoles

(
B′′l
Bρ

)
· (3Θ) ·β3/2

y ei(3ψy−δ·θ)

∣∣∣∣∣ ,

where φ is the bend angle of a dipole. A systematic error is of little concern, because
the phasors cancel remarkably well across an arc: 3∆ψy|module = 18π/5 � (−1/5) ·2π. To
estimate the effect of random errors, we do the summation in quadrature.

σ2
g =

1
8π2

[
1
9

(
∑

dipoles
φ2β3

y

)
σ2

a2
+

1
4

(
∑

sextupoles

(
B′′l
Bρ

)2

β3
y

)
σ2

Θ

]

We concern ourselves here only with the term arising from chromaticity sextupoles. For
20 of the 40 sextupoles, B′′l/Bρ ≈ 0.50m−2 and 5.3m < βy < 6.8m, with a median value
of 6.2 m; for the other 20, B′′l/Bρ ≈−0.72m−2 and 14.2m < βy < 19.8m, with a median
value of 16.7 m. Thus we estimate,

σ2
g [m−1] =

1
32π2 ·20 · (0.52 ·6.23 +0.722 ·16.73) ·0.00052 = 3.9×10−5

Putting this number into Eq.(3.2) we see that, at injection, maximum amplitude particles
(ε ≈ 31π mm-mr) will feel the effect of this resonance when δ < 5.7×10−5, a number too
small to be considered threatening.

4νy = 35 The tune diagram of Figure 3.3.6. suggests that the dynamic aperture is “seeded”
[3, pp.281-284] upon the 4νy = 35 resonance. Since no octupoles were included in either
the base or tuned configurations models, this line is excited by the sextupoles with a strength
quadratic in B′′/Bρ. The same sextupoles shift the tunes of large amplitude particles onto
the line. (See page 3 - 9.) The importance of a 4νy resonance and its effect on beam loss in
ISIS has already been discussed in the PD1 Report. [1, p.3-18]

3One can choose from several rough approximations to develop this argument. The one used here employs the area of an equilateral
triangle with vertices at the resonant orbits. To use the triangle’s in-circle instead, replace “2/

√
3” with “π/9.”
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3.4. Alternative Designs

Several alternative lattice designs were considered, although not all were studied thor-
oughly. Some may eventually be revisited and new ones developed. For now we content
ourselves with simply recording a few of them for future reference. One, the possibility
of using combined function magnets, was already discussed in PD1. The three we con-
sider here are: (a) changing the phase advance through the arc module, (b) eliminating the
small dipole from the central cell of the arc module (MM: missing magnet), and (c) using
a triangular, transitionless lattice (IG: imaginary γt ). For convenient reference, a summary
of their optical properties is provided below. Information on their hardware and space

Property
(Lengths in meters) PD2 MM (racetrack) IG
∆ψcell (8π/15, 2π/5) (π/2, π/2) (π/2,π/2)
Cells/arc 3×5 = 15 3×4 = 12 N/A
Cells/straight 7 6 4
(νx,νy) (11.747, 8.684) (9.048, 8.784) (8.366,7.805)
max (βx,βy) (15.141, 20.332) (19.225, 20.695) (41.363, 36.120)
min (βx,βy) (4.105, 4.570) (5.578, 4.642) (1.014, 1.252)
max Dx 2.523 4.334 2.809
min Dx 0.0 -0.061 -3.819
α 0.0053 0.0066 -0.006
γt 13.758 12.349 N/A

Table 3.4.2. Optical properties of alternative lattices.

usage is compiled in Table 3.4.3., which should be compared with Table 3.2.1.. Lattice
files, in MAD input format, for all of these can be found on the Proton Driver web site,
http://www-bd.fnal.gov/pdriver/8GEV .

3.4.1. Alternative Phase Advance Lattices

The phase advance per arc module of the PD1 lattice, with four modules in an arc, was
(∆ψx,∆ψy)|module = (3π/2,3π/2). When the number of modules was increased to five,
the phase advance had to change to (mxπ/5,myπ/5), where mx and my were integers. To
zero the dispersion in the straight sections, (a) mx should be even, and (b) each module
should be a first order achromat. (If (b) is not satisfied, dispersion in the arcs won’t be
periodic across module boundaries.) The choice mx = 8 assures that γt is comfortably
above the energy reach of the Proton Driver; mx = 6 results in insufficient horizontal fo-
cusing. For much of PD2 it was assumed that the average phase advance per cell was
to be (∆ψx,∆ψy)|cell = (8π/15,π/3) = (96◦,60◦), corresponding to mx = 8,my = 5, and
making the vertical phase advance across a three-cell arc module, ∆ψy|module = (1/2) ·2π.

However, when dipoles (with parallel edges) are introduced into the module, perturbations
induced by the vertical edge focusing make it difficult to make the module a periodic, lin-
early stable unit in the vertical direction. It is sitting on top of the half-integer stop band.

3 - 19



Lattice Element Name Number Length [m] Field
MM DIPOLES B1 2x4x2 = 16 7.780 B = 1.49 T

QUADRUPOLES QF (6+3x4)x2 = 36 1.059 B ′ = 10.29 T/m
QD (6+3x4)x2 = 36 1.059 -10.07

FREE (total) 273.401
IG DIPOLES B2 3x2x3 = 18 7.88 B = 1.26 T

B2145 2x2x3 = 12 2.95 1.26 T

QUADRUPOLES QFS+QFS 2x3 = 6 0.50 B′ = 8.13 T/m
QDS+QDS 1x3 = 3 0.50 -8.13

QDAF+QDS 2x3 = 6 0.50 -8.13

QDLBX 3x3 = 9 1.00 -8.13
QFLBX 3x2x3 = 18 1.00 8.13
QDLBY 2x2x3 = 12 0.72 -8.13
QFLBY 2x3 = 6 0.72 8.13
QDT 4x2x3 = 24 0.24 -2.03
QFT 2x3x3 = 18 0.24 2.03

SEXTUPOLES HS1 2x3x3 = 18 0.25 B ′′ = 16.86 T/m2

VS1 2x3x3 = 18 0.25 -24.70
HS2 2x2x3 = 12 0.25 -16.86
VS2 2x2x3 = 12 0.25 24.70

FREE (total) 254.38

Table 3.4.3. Hardware and space usage in two alternative designs: MM, the missing mag-
net lattice, and IG, the transitionless (imaginary γt) lattice.

Either the module is unstable vertically or its vertical lattice function, βy, does not match
well into the straight sections. Of course, it is not necessary that the arc module be a lin-
early stable unit. The arcs could act simply as beamlines connecting one straight section to
the other. One design did, in fact, proceed in this manner, but not without using individually
powered trim quads to control βy in the arcs.

The choice was between (a) designs in which lattice functions in arcs and straight sec-
tions are automatically reasonably matched using the main bus quads, while trim quads are
used for small perturbations, and (b) designs in which trim quads control lattice func-
tions in the arcs, even in a “base” configuration. The phase advance was changed to
(∆ψx,∆ψy)|module = (8π/5,6π/5), corresponding to choice (a).4 (As a bonus, the arcs
were made optically transparent in both planes.) We have discussed the negative impli-
cations for the νx +2νy = 29 resonance line when superperiodicity is broken. (See pp.3
- 16 ff.) If superperiodicity is preserved, tracking suggests that the most important reso-
nance for determining dynamic aperture will be 4νy = 35, which could be excited by the
(8π/15,π/3) design as well. Finding a good working point will be an important operational
consideration.

4A possibility that was not studied, but may be worth a look in the future, is (∆ψx,∆ψy)|module = (8π/5,7π/5). The principle
resonance of concern would then be 2νx +2νy = 44. Considering that there are 44 cells, and that the resonance can be driven by space
charge, this numerology could be ominous.
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3.4.2. Missing Magnet Lattice

In one variation of the PD2 design, the small dipoles are removed from the central cells of
the arc modules. This increases the amount of free space in the arcs and eliminates about
40% of the momentum compaction (see page 3 - 8), raising transition gamma. Lengths and
strengths of remaining elements are adjusted so that the arc module remains a linear achro-
mat. The “missing magnet” design had the attractiveness of featuring only a single species
of quadrupole and dipole, making it one of the simplest lattices considered. It was not
pursued because its maximum dispersion of ≈ 3 m, with βx,max ≈ 26 m and βy,max ≈ 30 m,
were too large to accomodate εinv = 40π mm-mr at injection.

3.4.3. Transitionless Lattice

One of the superperiod 3, triangular lattices considered is noteworthy in that it possesses a
negative momentum compaction, α. It is a so-called “imaginary γt” lattice, which more cor-
rectly means that it is transitionless: there is no energy for which the slip factor, α−1/γ2,

becomes positive. Each arc contains three low βx regions and two low βy regions. Low
βy regions coincide with regions of negative dispersion, which make α negative. Unfor-
tunately, small β in one location generally requires large β elsewhere. Like the missing
magnet design, this one was not pursued because its maximum dispersion (magnitude) of
≈ 3.8 m was too large when combined with βx,max ≈ 41 m and βy,max ≈ 36 m.
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